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1. Introduction 

The advection-diffusion equation has been largely applied in operational atmospheric dispersion 

models to predict mean concentrations of contaminants in the Atmospheric Boundary Layer (ABL). 

In principle, from this equation it is possible to obtain a theoretical model of dispersion from a 

continuous point source given appropriate boundary and initial conditions plus knowledge of the 

mean wind velocity and concentration turbulent fluxes. The main scheme for closing the equations 

is to relate concentration turbulent fluxes to the gradient of the mean concentration by eddy 

diffusivities, which are properties of the turbulent flow but not of the fluid; i.e. first-order closure 

(Arya, 1995). Even more important, the eddy diffusivities may vary in space and with the travel 

time of contaminants. In his statistical diffusion theory, Taylor (1921) pointed out that turbulent 

diffusion differs in the near and the far regions from a continuous point source. In the proximity of 

the source, fluid particles retain their memory of their initial turbulent environment. For long travel 

times, this memory is lost, and particles follow only the local properties of turbulence (Batchelor, 

1949). 

The aim of this work is to report a mathematical model describing the crosswind-integrated 

concentrations for dispersion of pollutants emitted from a continuous source in the atmospheric 

boundary layer. It considers the wind speed as a function of vertical height above the ground 

surface and eddy diffusivity as a function of both downwind distance from the source and vertical 

height. Besides, an integral parameterization of the vertical eddy diffusivity in a shear–buoyancy-

driven atmospheric boundary layer is developed by using a model for the frequency spectrum of 

eddy energy in the surface layer. Expressions of eddy diffusivities for vertically inhomogeneous 

turbulence and also dependent on source distance are proposed, which are calculated directly with 

the Batchelor’s theory and further developments suggested by Hojstrup and Monin-Obukhov 

scaling (Panofsky and Dutton, 1984). The statistical independence of Fourier components for 

distant frequencies allows the specification of the turbulent kinetic energy spectrum as the sum of 

buoyancy and a shear-produced part. The model and the new eddy diffusivities are well suited for 

application in air pollution modeling under unstable/neutral conditions. 

To reach this goal, we outline the paper as follows: in section 2, we report the derivation of the 

solution for the advection-diffusion equation with eddy diffusivities depending on x and z variables; 

in section 3 the turbulent parameterization assumed in this work is presented; in section 4, the wind 

speed profile is reported; finally, in section 5 we present discussions with future perspectives. 

 

2. An air pollution model 

For a Cartesian coordinate system in which the x direction coincides with that one of the average 

wind, the steady state advection-diffusion equation is written as (Arya, 1995): 
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where c  denotes the average concentration, U  the mean wind speed in x direction and Kx , Ky and 

Kz are the eddy diffusivities. The cross-wind integration of the equation (17) (neglecting the 

longitudinal diffusion) leads to (Moreira and Vilhena, 2009): 
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subject to the boundary conditions of zero flux at the ground and ABL top, and a source with 

emission rate Q at height sH : 
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where now cy  represents the average cross-wind integrated concentration. Bearing in mind the 

dependence of the Kz coefficient and wind speed profile U on variable z, the height iz  of a ABL is 

discretized in N sub-intervals in such a manner that inside each interval Kz(z) and U(z) assume the 

average value: 
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For the vertical eddy diffusivity depending on x and z, initially we take the average in z variable: 
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Recall that nK  assumes a constant value at z z zn n  1 . Therefore the solution of problem (2) is 

reduced to the solution of N problems of the type: 
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for n = 1: N, where cn

y  denotes the concentration at the n
th

 sub-interval.  

Here we have the first novelty of this work. To obtain the solution of Eq. (8), we make a change 

of variables (Crank, 1979): 
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To determine the 2N integration constants the additional (2N-2) conditions namely continuity of 

concentration and flux at interface are considered: 
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Applying the Laplace transform in equation (9) results: 
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where  * *( , ) ( , );y y

n p nc s z L c x z x s  , which has the well-know solution: 
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where, 

                                                    n nR U s    and   a nR U s  

Finally, applying the interface and boundary conditions we come out with a linear system for the 

integration constants. Henceforth the concentration is obtained inverting numerically the 

transformed concentration c y  by Gaussian quadrature scheme: 
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where Aj  and Pj  are the weights and roots of the Gaussian quadrature scheme and are tabulated in 

the book by Stroud and Secrest (1966). 

 

3. A model for eddy diffusivities depending on height and source distance in the surface layer 

A new integral parameterization of the vertical eddy diffusivity in a shear–buoyancy-driven 

atmospheric boundary layer can be developed by using a model for the frequency spectrum of eddy 

energy in the surface layer. The statistical independence of Fourier components for distant 

frequencies allows the specification of the turbulent kinetic energy spectrum as the sum of a 

buoyancy and a shear-produced part (Panofsky and Dutton, 1984). Hojstrup's model (Hojstrup, 

1981) divides the spectra (nondimensional) into high and low frequency parts, as the sum of a 

buoyancy and a shear-produced, respectively: 

S (n)  =  SL (n)  +  SH (n)                                                  (15) 

where the low frequency part SL (n)  (bouyancy production) for the vertical component depends on 

n = fz/U and  z/L, where n a dimensionless frequency, f is the frequency, z is the height above the 

ground and U is the longitudinal wind speed. The high frequency part SH (n) (shear production) 

depends on function of n = fz/U. Specifically, the model contains the following expression for the 

vertical component: 
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where ( )wS f  is the spectral density of w. The surface friction velocity is represented by *u . The 

vertical Eulerian turbulent velocity variance is written as: 
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The present approach fundamentally hinges on Batchelor’s (1949) time-dependent equation for 

the evolution of eddy diffusivities:  
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where 
w

w

U
 


  is defined as the ratio of the Lagrangian to the Eulerian integral time scales in the 

vertical direction ( 0.55   is the Corrsin constant) and t = x/U (travel time).  

The vertical spectral density considering only buoyancy effect is: 
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Then, using Eq. (17), the vertical Eulerian turbulent velocity variance is: 
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Using the relation for w  results: 
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and, using Eq. (18), we obtain we obtain the vertical eddy diffusivity considering buoyancy effect in 

the surface layer: 
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where *u x
X

Uz
 .  

The vertical spectral density considering only shear effect is written as: 
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Then, using Eq. (17), the vertical Eulerian turbulent velocity variance is: 
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Using the relation for w  results: 
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and, using Eq. (18), we obtain the vertical eddy diffusivity considering shear effect in the surface 

layer: 
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Finally, take into account the contribution of buoyancy and shear parts, combining the Eqs. (22) 

and (26), we have: 
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It is important to mention that the x* variable, that include the resulting eddy diffusivity (27), is: 
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The eddy diffusivity (27), as a function of downwind distance, is dependent of z and yields a 

description of turbulent dispersion in the near, intermediate and far fields of a source in the surface 

layer (the memory effect of turbulent transport is considered). 

 

4. Vertical wind speed parameterization 

The wind speed profile used in the Eq. (14) has been parameterized following the similarity 

theory of Monin-Obukhov and OML model (Berkowicz et al., 1986): 
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where  z min L zb i , .01 ,and m  is a stability function given by (Paulson, 1970): 
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with, 
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k = 0.4 is the Von Karman constant, u*  is the friction velocity and zo roughness length. 

 

5. Discussions and perspectives 

In this work, we present an analytical solution of the two dimensional advection–diffusion 

equation by using integral transform method considering the eddy diffusivity depending on x and z 

variables. By analytical we mean that no approximation is made along its derivation. Analytical 

solutions are of fundamental importance in understanding and describing physical phenomena, 

since they are able to take into account all the parameters of a problem, and investigate their 

influence. Moreover, we need to remember that air pollution models have two kinds of errors. The 

first one is due to the physical modeling and another one inherent to the numerical solution of the 

equation associated to the model. Henceforth, we may affirm that the analytical solution, in some 

sense, mitigate the error associated to the mathematical model. As a consequence, the model errors 

somehow, restricts to the physical modeling error. 

Besides, a method to derive eddy diffusivities depending on source distance for a turbulent 

unstable/neutral ABL was proposed. These coefficients are valid in the near, the intermediate and 

far field of a continuous source located in the surface layer. The present model provides a vertical 

eddy diffusivity varying with distance from the source for inhomogeneous turbulence ( Kz  is 

dependent on the nondimensional distance, *X xu Uz  and is also dependent on the stability 

parameter z L ).  

We focus our attention in the future to evaluate the memory effect and reinforce our confidence 

in the parameterization (27) with numerical comparisons using experimental dataset. Furthermore, 

it is important to emphasize that we will be verify if the results obtained with the eddy diffusivity 

depending on the source distance are better than the ones reached with asymptotic eddy diffusivity, 

valid only for the far field of a source. 
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