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1. Introduction 

Despite wide use due to the simplicity of its formulation, the Gaussian plume model for 

turbulent atmospheric dispersion of a contaminant is not adequate for ground-level pollution 

sources because the mean wind velocity is assumed to be uniform and the vertical eddy 

diffusivity constant. For a more realistic description of turbulent dispersion near the surface of 

the earth it is essential to account for the variation of the mean wind velocity and the vertical 

eddy diffusivity with height above the ground. In this work, we take a step forward regarding 

the Gaussian concepts to simulate pollutant dispersion in the atmosphere, presenting a new 

three-dimensional solution of the steady-state advection-diffusion equation considering a 

vertically heterogeneous atmospheric boundary layer (ABL) for a ground-level finite area 

source. The model incorporates realistic profiles for the variation of wind speed, lateral and 

vertical eddy diffusivity with height. The model is well suited for accurate prediction of 

emission concentration levels in the vicinity of an area source, as well as farther downwind, 

under all stability atmospheric conditions. We reach this goal by using two methods: the 

generalized integral transform technique (GITT), a hybrid method that has solved a wide class 

of direct and inverse problems mainly in the area of heat transfer and fluid mechanics, and the 

transformed problem is solved by the advection-diffusion multilayer method (ADMM), a 

semi-analytical solution based on a discretization of the ABL in sub-layers where the 

advection-diffusion equation is solved by the Laplace transform technique.  

To reach this goal, we outline the paper as follows: in section 2, we report the derivation of 

the solution for the three-dimensional advection-diffusion equation; in section 3 the turbulent 

parameterisation assumed in this work is presented; in section 4, the numerical results given 

by the method are announced as well as the comparison with experimental data; finally, in 

section 5 we present the conclusions. 

 

2. The mathematical model 

The advection-diffusion equation of air pollution in the atmosphere is essentially a 

statement of conservation of suspended material. The concentration turbulent fluxes are 

assumed to be proportional to the mean concentration gradient, which is known as Fick-

theory. This assumption, combined with the continuity equation, leads to the advection-

diffusion equation (Blackadar, 1997): 
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where c denotes the average concentration, xK , yK , zK  and u, v, w are the Cartesian 

components of eddy diffusivity and wind, respectively, and S is the source term. The x-axis of 

the Cartesian coordinate system is aligned in the direction of the actual wind near the surface, 

the y-axis is oriented in the horizontal crosswind direction, and the z-axis is chosen vertically 

upwards. 

In order to solve the Eq. (1) we include the following assumptions: the pollutants are inert 

and have no additional sinks or sources downwind from the source. The vertical and lateral 
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components of the mean flow are assumed to be zero. The mean horizontal flow is 

incompressible, horizontally homogeneous and stationary. Then, we have: 
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for hz 0 , Ly 0  and 0x . The mathematical description of the dispersion problem 

(2) is completed by boundary conditions. In the z-direction, the pollutants are subjected to the 

boundary conditions of zero flux at ground and ABL top: 
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where and h is the height of the ABL. In the y-direction, we have the conditions: 
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and, for the source condition, a continuous point source of constant emission rate Q  is 

assumed, with a fixed frame of reference with the x-axis coinciding with the plume (Arya, 

2003): 

)()(),,0( os yyHzQzyuc           at   x = 0                     (3c) 

where   is the Dirac delta function and Hs is the height source. 

To solve the advection-diffusion equation for inhomogeneous turbulence by the ADMM 

method (Moreira and Vilhena, 2009), we must take into account the dependence of the eddy 

diffusivities and wind speed profiles on the height variable (variable z). Therefore, we 

perform a stepwise approximation of these coefficients. To reach this goal, we discretize the 

height h of the ABL into N sub-intervals in such manner that inside each sub-region the eddy 

diffusivities and wind velocities assume average values. For the eddy diffusivity depending 

on x and z, we take the average of the x and z variables. Indeed, it is now possible to recast 

problem (2) as a set of advective-diffusive problems with constant parameters, which for a 

generic sub-layer reads like: 
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for n = 1:N, where N denotes the number of sub-layers and nc  denotes the concentration at the 

n
th

 sub-interval. Besides which, two boundary conditions are imposed at 0z  and h given by 

equation (3a) together with the continuity conditions for the concentration and flux of 

concentration at the interfaces. Namely: 

1 nn cc                   n = 1, 2,...(N-1)                       (5a) 
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must be considered in order to uniquely determine the 2N arbitrary constants appearing in the 

solution of the set of problems (4). 

Now we are in position of applying the GITT method in the y-direction. The formal 

application of the GITT method (Cotta, 1993, Cotta and Mikhaylov, 1997) begins with the 

choice of the problem of associated eigenvalues (also known in the literature as the auxiliary 

problem) and their respective boundary conditions:  

0)((y) 2"  yiii                  at     0 < y < L               (6a) 

0)(' yi                        at     y  = 0, L                (6b) 

The solution is )cos()( yy ii   , where i  are the positive roots of the expression 

0)(sin Li . Then, 00   and Lii /  . It is observed that the functions )(yi  and i , 



 

 

known respectively, as the eigenfunctions and eigenvalues associated with the problem of 

Sturm-Liouville, satisfy the following orthonormality condition:   
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where Nm is given by:  
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Following the formalism of GITT, the first step is to expand the variable ),,( zyxc  into the 

following form:  
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In the traditional GITT method the transformed problem is solved numerically. In this 

work the transformed problem is solved applying the Laplace Transform technique (ADMM 

method). After some steps, we obtain (for more details see the work of Costa et al., 2006): 
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and  sHzH   is the Heaviside function and 
x

n
e

K

xu
P   is the well known Peclet number, 

essentially representing the ratio between the advective transport to diffusive transport. The 

constants ka  and kp  are the weights and roots of the Gaussian quadrature scheme and are 

tabulated in the book by Stroud and Secrest (1966) while k is the quadrature points.  

To get an accurate estimate of the concentrations from an isolated area source, integrations 

should be done over both the along-wind (x-axis) and crosswind (y-axis) dimensions of the 

source. To obtain an analytical solution for a ground-level finite area source, the solution for a 

ground-level point source (Eq. 9) is used (Park and Baik, 2008), resulting: 
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3. Turbulence Parameterization 

This work considers the results obtained by Degrazia et al. (2001), which follows:  
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where w* is the convective velocity scale (α = x, y, z), φ is the non-dimensional molecular 

dissipation rate functions associated to buoyancy productions, (f
*

m)i is the reduced frequency 

of the convective spectral peak and ci = αiαu(2πk)
-2/3

 with αu = 0.5± 0.05 and αi = 1, 4/3, 4/3 

for u, v and w components, respectively, and X is a non-dimensional time since is the ratio of  

travel time x/u and the convective timescale h/ w*. 



 

 

The formulae used for evaluating mean wind are those of similarity (Panofsky and Dutton, 

1988): 
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where, *u  is the scale velocity relative to mechanical turbulence, ak  the von Karman 

constant, L is the Monin-Obukhov length, zo roughness length and m  the stability function 

expressed in Businger relations: 
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4. Numerical results 

Realistic experimental datasets for area sources are difficult to find in the literature. To 

verify the physical consistency of the model and the connection between theory and reality, 

the model performance was evaluated using 3D experimental data of Copenhagen (Gryning 

and Lick, 1984., Gryning et al. 1987). These experiments were carried out north of the city of 

Copenhagen, where a pollutant SF6 was released without buoyancy from a tower at a height 

of 115m and collected at the surface positions by samplers. The site of the experiment was 

mainly residential with a roughness length of 0.6 m. Weather conditions during the 

experiment varied between moderately unstable and convective. 

Figure 1 shows the scattering diagram between the observed and model-predicted 

concentrations. According to the figures, the concentrations satisfactorily reproduce the 

experimental results. 

 

 
Figure 1: Scatter diagram for the solution (9): Observed (Co) and predicted (Cp) centerline 

ground-level concentration normalized with emission rate (c/Q). Data between lines 

correspond to ratio Co/Cp  [0.5, 2]. 

 



 

 

Table 1 shows the statistical indexes defined by Hanna (1989), experimental data obtained 

from Copenhagen. The indices indicate that the model simulates satisfactorily the observed 

concentrations, with values nmse, fb and fs relatively close to zero, and r and fa2 relatively 

close to 1. 

 

Table 1: Statistical evaluation of the model results with Copenhagen data set. 

 

Model nmse R Fa2 fb Fs 

c(x,0,0)/Q  0.15 0.87 0.96 0.01 0.09 

 

 

5. Conclusions 

We present in this work a new steady-state, three-dimensional, semi-analytical solution of 

the advection-diffusion equation considering a vertically inhomogeneous ABL for a ground-

level finite area source (Eq. 10). It is relevant to underline that in this approach no 

approximation is made in the solution derivation, except for the stepwise approximation of the 

parameters and the Laplace numerical inversion. Also it is important to mention that the semi-

analytical method is quite general in the sense that it solves one, two and three-dimensional 

diffusion problems. It Is a promising technique for simulating contaminant dispersion in the 

atmosphere for more realistic problems.  

 

Acknowledgements: The authors thank to CNPq and FAPES for the financial support of this 

work. 

 

References 

Arya, S.P., 2003. A review of the theoretical bases of short-range atmospheric dispersion and 

air quality models. Proceedings of the Indian National Science Academy 69A (6), 709–

724.  

Blackadar, A.K., 1997. Turbulence and diffusion in the atmosphere: lectures in environmental 

sciences. Springer-Verlag, 185pp. 

Costa, C.P., Vilhena, M.T., Moreira, D.M., Tirabassi, T., 2006. Semi-analytical solution of 

the steady three-dimensional advection-diffusion equation  in the planetary boundary layer. 

Atmospheric Environment 40, 5659-5669.   

Cotta, R.M., 1993. Integral transforms in computational heat and fluid flow. CRC Press, Boca 

Raton, Florida. 

Cotta, R. and Mikhaylov, M., 1997. Heat conduction lumped analysis, integral transforms, 

symbolic computation. John Wiley Sons, Baffins Lane, Chinchester, England. 

Degrazia, G.A., Moreira, D.M., Vilhena, M.T., 2001. Derivation of an eddy diffusivity 

depending on source distance for vertically inhomogeneous turbulence in a convective 

boundary layer. Journal of Applied Meteorology 40, 1233–1240. 

Gryning, S.E. and Lyck, E., 1984. Atmospheric dispersion from elevated sources in an urban 

area: comparison between tracer experiments and model calculations. American 

Meterological Society 23, 651–660. 

Gryning, S.E., Holtslag, A.A.M., Irwin, J.S., Siversteen, B., 1987. Applied dispersion 

modelling based on meteorologing scaling parameters. Atmospheric Environment 21, 79–

89. 

Hanna, S.R., 1989. Confidence limit for air quality models as estimated by bootstrap and 

jacknife resampling methods. Atmospheric Environment 23, 1385–1395. 

Moreira, D.M. and Vilhena, M.T., 2009. Air Pollution and Turbulence: Modeling and 

Applications. 1. ed. Boca Raton: CRC Press, 354p. 

http://lattes.cnpq.br/9362686215096702


 

 

Park, Y.S. and Baik, J.J., 2008. Analytical solution of the advection-diffusion equation for a 

ground-level finite area source, Atmos. Environ. 42, 9063–9069. 

Panofsky H.A. and Dutton J.A., 1988. Atmospheric Turbulence. John Wiley & Sons, New 

York. 

Stroud, A.H. and Secrest, D., 1966. Gaussian quadrature formulas. Englewood Cliffs, N.J., 

Prentice Hall Inc. 


