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1. Introduction 

Atmospheric gravity waves are important in the study of atmospheric circulation, structure and 

variability. Although there are effects in the lower atmosphere, the major wave influences occur in 

the middle atmosphere, between 10 and 110 km altitudes because of the decreasing in air density 

and the increasing wave amplitudes with altitude (Fritts, et al., 2003). Atmospheric gravity waves 

contribute to the energy and momentum transport and turbulence production (Nappo, 2002; 

Zilitinkevich et al., 2009). A more recent work (Tjernstrom et al., 2009, Meillier et al., 2008) 

suggested that gravity waves are one source of turbulence in Stable Planetary Boundary Layer and 

Residual Planetary Boundary Layer. In literature, the general structure for the study of gravity 

waves is the linear wave theory and the Taylor-Goldstein equation is their main governing 

expression (Gossard and Hooke, 1975). The Taylor-Goldstein equation is obtained from the 

linearization of the primitive set of equations for an inviscid, non-rotating fluid. Chimonas (2002) 

and Meillier et al. (2008) analyze some properties of gravity waves in the Stable Boundary Layer 

from the Taylor-Goldstein equation. Another method of studying the properties of gravity waves is 

through power spectra. Models of gravity wave spectrum have evolved with time. Various theories 

constrain gravity wave spectrum to behave in a particular manner over some range of wave 

numbers or frequencies. These observational and theoretical constraints have led to a canonical 

gravity wave spectrum that offers insights into mean properties of the gravity wave field and its 

variations with altitude (Balsley and Carter, 1982; Tsuda et al., 1989). It is also important to 

mention that most pollutants are emitted or chemically produced within the Stable Planetary 

Boundary Layer and Residual Planetary Boundary Layer and its evolution plays an important role 

in determining pollutant dispersion pathways and the chemical properties of atmospheric pollutants 

(Salmond and McKendry, 2005). 

Gravity waves parameterizations are critical components of virtually all large-scale atmospheric 

models. Aside from the theoretical deficiencies, even the most powerful available computing 

architectures still cannot run typical NWP (Numerical Weather Prediction) or climate models fast 

enough to resolve all relevant scales of atmospheric motion. At present, global models must, in 

practice, be run with horizontal resolutions that cannot typically resolve atmospheric phenomena 

shorter than ~10-100 km or greater for weather prediction and ~100-1000 km or greater for climate 

prediction. Many atmospheric processes have shorter horizontal scales than these and some of these 

“subgrid-scale” processes interact with and affect the larger-scale atmosphere in important ways. 

Since they cannot be resolved, large-scale models must resort to “parameterizations” that capture 

the salient effects on the resolved atmosphere. Atmospheric gravity waves are one such unresolved. 

From the definition of wave momentum flux deposition produced by a harmonic, Medvedev and 

Klaassen (1995, 2000) obtained an equation for the gravity wave and present a spectral 

parameterization scheme for calculating gravity wave momentum deposition in the middle 

atmosphere. The equation obtained is a differential nonlinear equation and it is not solved directly. 

The height of layer is discretized in sub-intervals in such a manner that inside each interval a linear 

equation is resolved considering average value of the quantities.  



In this work, we propose an analytical solution for the gravity wave equation. This equation is 

solved directly without linearization by the decomposition method (Adomian, 1990, 1994a). So, the 

nonlinear nature of the problem is preserved. Therefore, the errors found are only due to the 

parameterization used. The results are compared with the continuous linear solution.  

 

2. A solution of nonlinear equation for the gravity wave spectra 

An equation for the evolution of gravity wave spectra with height z was deduced by Medvedev 

and Klaassen (1995, 2000) from of the momentum flux divergence, 
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where S  is the power-spectral density of horizontal wind associated with gravity waves at height z,  

0  is the mean density of air in reference height, 0z  is the density of air in height z , Rm  is the 

real part of vertical wavenumber ( R Im m im  ),  Rzm  is the wavenumber associated with the 

maximum of gravity wave spectra and   is the coefficient of nonlinear damping due to interactions 

of the component  Rm  with other waves in the spectrum. 

To solve the Eq. (1) is necessary parameterize the coefficient  , because it is function of  power-

spectral density S . A parameterization for the coefficient   was suggested by Medvedev and 

Klaassen (1995, 2000),  
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where N  is the Brunt-Väisälä frequency and 
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is the horizontal wind variance created by all waves in the spectrum with vertical wavenumbers 

larger than the given Rm . 

Substituting (2) and (3) in Eq.  (1) is obtained, 
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The evolution of gravity wave spectra with height is given by Eq. (4). It is a nonlinear integro-

differential equation that has not a simple analytical solution. To solve the Eq. (4) is considered the 

Adomian’s decomposition method (Adomian, 1990, 1994a),  
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with 1 dz  L and nA  are the Adomian's polynomials (Adomian, 1990, 1994a). 

   

 

4. Results and discussion 

As discussed in the introduction, in the work of Medvedev and Klaassen (1995, 2000) the 

equation for the gravity wave spectra was solved in discrete layers by a linear approximation. Now, 

we compare the solution obtained in this work (Eqs. 5 and 6), which considers the nonlinearity of 

the equation, with the linear solution obtained when it considers the average values of horizontal 

wind variance ( , )
R

R R
m

S m z dm


  appearing in Eq. (4). The terms nu  are calculated from Eq. (6).  

The solution of Eq. (4) requires the value of gravity wave spectra in a reference height. We 

assume that the gravity wave spectra consists of a general Desaubies spectrum form (Desaubies, 

1976) in 0z    0,0RS m S , 
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where 0a  is a constant, *m  is the wavenumber associated with the maximum of gravity wave 

spectra, N  is Brunt-Väisälä frequency.  For comparison of gravity wave spectra calculated from 

expressions (5 and 6) with the linear solution of Eq. (4) we consider the values used by Medvedev  

and Klaassen (2000) for 0a , *m  and  N ,  namely 0 1 6a  , 1

* 0.006m m  and 10.02N s . In Eq. 

(4) is considered Rz R R im m m R , where iR  is Richardson flux number. In this case 1iR  . 

Considering the initial spectra given by Eq. (7) it is possible to calculate analytically the integrals of 

Eq. (7), 
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Substituting Eq. (8) in Eq. (6), we obtain a simple algebraic expression that, although long, requires 

a time machine extremely small. Figure 1 shows the good agreement between the solution of 

equation (4) by the Adomian method (equations 5 and 6) and the classical Runge-Kutta method.     

Figures 2 and 3 show the gravity wave spectra calculated from Eq. (6) (solid line) and calculated 

from linear solution of Eq. (4) (dotted line), obtained considering constant  . The Figure 2 

indicates that the linear solution of Eq. (4) is a good approximation of solution of Eq. (4) for small 

height (< 4 km). However, the Figure 3 shows that the linear solution is not a good approximation 

of solution of Eq. (4) for height > 4 km. The Figure 3 (50 km) shows that the linear solution differs 

completely from the solution of Eq. (4) when considering the nonlinearity of the problem (Eqs. 5 

and 6).  

The Eq. (4) is nonlinear due to the parameterization of coefficient   expressed in Eq. (2). It is 

the coefficient of nonlinear damping due to interactions of the component  Rm  with other waves in 

the spectrum. This term is essentially nonlinear. Its linearization leads to a completely incorrect 

solution in height above of the 50 km. Therefore, the linear solution cannot be used to correctly 

describe the spectrum of kinetic energy when considering height above 4 km (Figures 2 and 3). 
 



 
Figure 1. Gravity wave spectra calculated from Eqs. 5 and 6 (solid line) and with the Runge Kutta Numerical Method 

(dotted line) for the height z = 50 km. 

 

 
Figure 2. Gravity wave spectra calculated from Eqs. 5 and 5 (solid line) and with linearized solution of Eq. (4) (dotted 

line) for the height z = 4 km. 

 

 



 
Figure 3. Gravity wave spectra calculated from Eqs 5 and 6 (solid line) and with linearized solution of Eq. (4) (dotted 

line) for the height z = 50 km. 

 

 

5. Conclusions 

In this study, the nonlinear equation of the evolution of gravity wave spectra with height z was 

analytically solved without linearization by the decomposition method, so the nonlinear nature of 

problem was preserved. Therefore, mathematically, the errors found are only due to the 

parameterization used. As a test, we used a spectral parameterization scheme for calculating gravity 

wave momentum deposition in the middle atmosphere proposed by Medvedev and Klaassen (1995, 

2000). This proposed parameterization involves nonlinear wave interactions. Our results indicate 

that the linear solution of the resultant equation is a good approximation of the solution only for 

small height (< 4 km). However, the linear solution is not a good approximation of the solution of 

the resultant equation for height > 4 km, because the linearization of the beta coefficient leads to a 

solution that does not correctly describe the kinetic energy spectra. The discrepancies depend not on 

the solution of the nonlinear equation, but on the equation itself, which it is only a reality model. In 

the model proposed by Medvedev and Klaassen (1995, 2000) the layer height was discretized in 

sub-intervals of the 0.5 km, in such a manner that inside each interval a linear equation is resolved 

considering average value of the quantities. This is an approximation used when you cannot solve 

the resulting equations from the parameterization employed. Taking into account the analytical 

feature and fast numerical convergence of the solution, besides the fact that this sort of solution is 

not found in the literature for this problem, we are confident to affirm that the proposed solution is a 

promising technique to handle realistic physical problems. In view of the potential usefulness of the 

decomposition method it would be desirable to extend the applicability of the method to test other 

parameterizations. Work in this direction is in progress. 
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