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1. Introduction 

Analytical solutions of advection-diffusion equations are of fundamental importance 

in describing and understanding dispersion phenomena, since all the parameters are 

expressed in a mathematically closed form and therefore the influence of individual 

parameters on pollutant concentration can be easily examined. Also, the analytical 

solutions make it easy to obtain asymptotic behaviors of the solutions, which are usually 

difficult to obtain through numerical calculations. The analytical solutions can also be 

used to improve the modeling of pollutant dispersion by evaluating the performances of 

sophisticated numerical dispersion models (which numerically solve the advection–

diffusion equation), yielding results that can be compared not only with experimental 

data but, in an easy way, with the solution itself, to check numerical errors.  

The most widely used mathematical model solves the closing of the advection-

diffusion equation based on the gradient transport hypothesis that, in analogy with 

molecular diffusion, assumes that the turbulence is proportional to the magnitude of the 

concentration gradient average: 
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where, in general, the eddy diffusivity Kx is a function of the typical length and velocity 

scales of the turbulence field and varies with height z.   

Measurements collected in the Convective Boundary Layer (CBL) have shown that 

the flux of some quantities, such as potential temperature, can be counter to its mean 

vertical gradient (Lenschow, 1970; Warner, 1971). To account for this effect Deardorff 

(1972), Troen and Mahrt (1986) and Holtslag and Moeng (1991) proposed to include a 

countergradient correction term in Eq. (1): 
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The countergradient fluxes are characterized by larger scales of eddies in the 

boundary layer, as opposed to smaller scale eddies, such fluxes are often called non-

local fluxes. A summary of countergradient expressions proposed in the literature is 

given by van Dop and Verver (2001). We aim to study the occurrence of 

countergradient fluxes for the variable concentration. For this, we use a generic equation 

for turbulent diffusion suggest by van Dop and Verver (2001), obtain an expression for 

the advection-diffusion equation depending on eddy diffusivity, skewness, Lagrangian 

time scale and vertical turbulent velocity. This equation is solved by the Laplace 

transform technique. The results show that the nonlocal closure affects the process and 

must be taken into account in dispersion calculations. 
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2. Solution of the advection-diffusion equation with the nonlocal closure 

The advection-diffusion equation that describes the crosswind-integrated 

concentration arising from a continuous point source can be written as: 
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where c  is the crosswind-integrated concentration, u  is the mean horizontal wind 

speed and w c   is the vertical turbulent contaminant flux.  

Using the generic equation for turbulent diffusion suggested by van Dop and Verver 

(2001), where the vertical turbulent contaminant flux can be written as (time 

independent): 
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where 
kS  is the skewness, 

w  is the vertical turbulent velocity standard deviation and 

lT  is the Lagrangian time scale. The second term on the left hand side of Eq. (4) 

represents the nonlocal countergradient term. 

In this work, Eq. (4) is substituted in Eq. (3), leading to: 
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where 0.5 k w lS Tu  , for 0 iz z   and 0x  , subject to the boundary conditions (zi 

is the CBL top): 
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                     at  z = 0, zi                         (6) 

and a continuous source is assumed with rate of constant emission Q at the source 

height sH : 
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The advection-diffusion equation solution for the case when 0kS   (or 0  ) was 

obtained in the works of Moreira et al. (1999) and Mangia et al. (2002). It is observed 

that the second term on the right hand side of Eq. (5) is a diffusive term, where   has 

an eddy diffusivity ( 2m s ) dimension. 

Applying the Laplace transform to the above with respect to x, we obtain (with zK , 

u  and   independent of x):                                              
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where  ( , ) ( , );c s z L c x z x s 


.  

To solve the advection-diffusion equation for nonhomogeneous turbulence we must 

take into account the dependence of all parameters on the height variable (variable z). 

Therefore, to solve this kind of problem we have to perform a stepwise approximation 

of these coefficients. To reach this goal, we discretize the height zi of the Atmospheric 

Boundary Layer (ABL) into N sub-intervals in such manner that inside each sub-region, 



( )K z , ( )u z  and ( )z  assume average values. Thus, after this procedure the equation 

(8) has a well known solution form for every sub-interval 
1n nz z z   : 
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for 1:n N . 

 Taking a closer look at the solution in equation (9), we promptly realize that 2N 

integration constants are present. To determine these integration constants, we impose 

(2N-2) interface conditions, namely the continuity of concentration and flux 

concentration at the interface. These conditions are expressed as: 

1n nc c                     n = 1, 2,...(N-1)                 (10) 
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            n = 1, 2,...(N-1)                 (11) 

Finally, applying the interface and boundary conditions we obtain a linear system for 

the integration constants. Henceforth the concentration is obtained by inverting 

numerically the transformed concentration c


 by Gaussian quadrature scheme: 
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where  sH z H  is the Heaviside function and, 
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The solution is only valid for x > 0, as the quadrature scheme of Laplace inversion 

does not work for x = 0. The values of jw  (weights) and jp  (roots) of the Gaussian 

quadrature scheme are tabulated in the book by Stroud and Secrest (1966). 

The classical statistical diffusion theory, the observed spectral properties and 

observed characteristics of energy-containing eddies are used to estimate the turbulent 

parameters in Eq. (12) (Degrazia et al. 1997, 2001).  

 

3. Numerical results 

The performance of the model has been evaluated against experimental data from 

dispersion experiments carried out in the northern part of Copenhagen, described in 

Gryning et al. (1987).  To analyze the influence of the countergradient term in the 

turbulent transport, the simulation was made utilizing the data of experiment 8, which is 

strongly convective ( 10iz L  ).  

Figures 1-a to 1-f show the effect of the nonlocal transport for different source 

heights on the ground-level concentration. It is quickly verified that the maximum 

concentration peak changes quantitatively (despite the maximum position does not 

vary).  

In figure 1-a ( 0.025s iH z  ) a pronounced peak near the source is observed for 

0.25kS  , approximately 15% larger than with 0kS  . In the source, heights 0.05, 0.1 



and 0.25, respectively, peaks are also observed, maintaining a significant difference in 

relation to the curve with 0kS  , that is, (b) 20%, (c) 14% and (d) 8%. For negative 

skewness the difference between 0kS   is smaller and a reduction in the concentration 

peak happens: (a) 12%, (b) 11%, (c) 10% and (d) 7%. In figures 1-e and 1-f, that 

represent higher sources, the tendency of the negative skewness is altered in relation to 

the previous cases. The concentration with 0kS  , in figure 1-e, grows quicker, but the 

maximum value is smaller than for 0kS  . In figure 1-f, for 0kS  , the concentration is 

practically null until a certain distance and begins to grow, reaching the same value that 

0kS   in around ~ 3X .  

 

 

 

 

 

Figure 1: Nondimensional ground-level concentration *

iC cuz Q  as a function of 

the nodimensional distance ( * iX xw uz ) for different nondimensional source heights 

Hs/zi: (a) 0.025, (b) 0.05, (c) 0.1, (d) 0.25, (e) 0.5 and (f) 0.9. 

 



4.  Conclusions 

This work describes the analytical solution of a model that considers the nonlocal 

closure of the turbulent diffusion in the advection-diffusion equation. The 

countergradient term in the turbulence closure made an additional term appear in the 

advection-diffusion equation. This term is related to the asymmetrical transport in the 

CBL. The nonlocal character was introduced in previous works in the eddy diffusivity, 

but now it is done as a new term of the differential equation. We verified that the 

skewness was more effective in the distance of the peak concentration, altering the 

value of the maximum. This is an important result because the determination of the 

maximum in the ground-level concentration is one of the most important aspects to be 

considered in the control of the quality of the air. Additionally, the incorporation of the 

countergradient term didn't generate larger computational effort in relation to the 

original problem. We will focus our future attention on a comparison with the dataset of 

the classic tank experiment obtained in the work of Misra (1982).  
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